首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18583篇
  免费   1723篇
  国内免费   2596篇
  2023年   318篇
  2022年   351篇
  2021年   539篇
  2020年   629篇
  2019年   739篇
  2018年   655篇
  2017年   694篇
  2016年   698篇
  2015年   652篇
  2014年   806篇
  2013年   1181篇
  2012年   758篇
  2011年   734篇
  2010年   617篇
  2009年   796篇
  2008年   820篇
  2007年   930篇
  2006年   886篇
  2005年   805篇
  2004年   660篇
  2003年   786篇
  2002年   655篇
  2001年   556篇
  2000年   503篇
  1999年   510篇
  1998年   397篇
  1997年   392篇
  1996年   425篇
  1995年   384篇
  1994年   395篇
  1993年   387篇
  1992年   306篇
  1991年   325篇
  1990年   287篇
  1989年   258篇
  1988年   239篇
  1987年   219篇
  1986年   183篇
  1985年   197篇
  1984年   195篇
  1983年   113篇
  1982年   174篇
  1981年   110篇
  1980年   130篇
  1979年   106篇
  1978年   71篇
  1977年   67篇
  1976年   57篇
  1973年   41篇
  1972年   45篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
101.
Diurnal variation in ion content of the solution bathing roots of two plants growing together in sand culture was analysed for three pairs of grass-legume species (Lolium multiflorum andTrifolium pratense; Zea mays andGlycine hispida; Avena sativa andVicia sativa) and their monospecific controls. Biomass and nitrogen content of plants were determined. Ion concentration (NO 3 , NO 2 , NH 4 + , and K+) and pH of root solutions were measured for Lolium-Trifolium plant pairs and controls at 6 hours intervals over 36 h, starting at 8 am within a circadian cycle. Root solutions were regularly depleted in NO 3 by the grasses (Lolium-Lolium control) throughout the cycle. For associations involving the legume (Lolium-Trifolium and Trifolium-Trifolium), NO 3 depletion was followed by NO 3 enrichment at night, from late afternoon to early morning; the enrichment was more marked for the Lolium-Trifolium association. Solutions which did not contain NO 2 ions, were enriched by trace amounts of NH 4 + ions, largely depleted in K+ and alkalanized for all associations throughout the cycle. Repeating the experiment with the three pairs of species at the vegetative phase of development confirmed the previous results: NO 3 enrichment during the night for associations with legumes. When the experiment was repeated with older plants which had almost completed their flowering stage, depletion only was observed and no NO 3 enrichment. These data suggest that NO 3 enrichment results from N excretion from active nodulated roots of the legume, accounting for the increase in both biomass and nitrogen content of the companion grass in grass-legume association. The quantitative importance and periodicity of nitrogen excretion as well as the origin of nitrate enrichment are discussed.  相似文献   
102.
Leaf-specific thionins of barley (Hordeum vulgare L.) have been identified as a novel class of cell-wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. The distribution of these polypeptides has been studied in the host-pathogen system of barley and Erisyphe graminis DC.f.sp. hordei Marchal (powdery mildew). Immunogold-labelling of thionins in several barley cultivars indicates that resistance or susceptibility may be attributed to the presence or absence of thionins at the penetration site in walls and papillae of epidermal leaf cells.All of the leaf-specific thionin genes are confined to the distal end of the short arm of chromosome 6 of barley. None of the genes for cultivarspecific resistance to powdery mildew which have previously been mapped on barley chromosomes are found close to this locus.  相似文献   
103.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   
104.
When young wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) plants were deprived of an external sulphate supply (-S plants), the capacity of their roots to absorb sulphate, but not phosphate or potassium, increased rapidly (derepression) so that after 3–5 d it was more than tenfold that of sulphate-sufficient plants (+S plants). This increased capacity was lost rapidly (repression) over a 24-h period when the sulphate supply was restored. There was little effect on the uptake of L-methionine during de-repression of the sulphate-transport system, but S input from methionine during a 24-h pretreatment repressed sulphate influx in both+S and-S plants.Sulphate influx of both+S and-S plants was inhibited by pretreating roots for 1 h with 4,4-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) at concentrations > 0.1 mol · m-3. This inhibition was substantially reversed by washing for 1 h in DIDS-free medium before measuring influx. Longer-term pretreatment of roots with 0.1 mol·m-3 DIDS delayed de-repression of the sulphatetransport system in-S plants but had no influence on+S plants in 3 d.The sulphydryl-binding reagent, n-ethylmaleimide, was a very potent inhibitor of sulphate influx in-S roots, but was much less inhibitory in +S roots. Its effects were essentially irreversible and were proportionately the same at all sulphate concentrations within the range of operation of the high-affinity sulphate-transport system. Inhibition of influx was 85–96% by 300 s pretreatment by 0.3 mol·m-3 n-ethylmaleimide. No protection of the transport system could be observed by including up to 50 mol·m-3 sulphate in the n-ethylmaleimide pre-treatment solution. A similar differential sensitivity of-S and+S plants was seen with p-chloromercuriphenyl sulphonic acid.The arginyl-binding reagent, phenylglyoxal, supplied to roots at 0.25 or 1 mol·m-3 strongly inhibited influx in-S wheat plants (by up to 95%) but reduced influx by only one-half in+S plants. The inhibition of sulphate influx in-S plants was much greater than that of phosphate influx and could not be prevented by relatively high (100 mol·m-3 sulphate concentrations accompanying phenylglyoxal treatment. Effects of phenylglyoxal pretreatment were unchanged for at least 30 min after its removal from the solution but thereafter the capacity for sulphate influx was restored. The amount of new carrier appearing in-S roots was far greater than in+S roots over a 24-h period.The results indicate that, in the de-repressed state, the sulphate transporter is more sensitive to reagents binding sulphydryl and arginyl residues. This suggests a number of strategies for identifying the proteins involved in sulphate transport.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonic acid - NEM n-ethylmaleimide - PCMBS p-chloromercuriphenyl sulphonic acid  相似文献   
105.
Carbohydrate-hybridization probes (Vreeland and Laetsch, 1989, Planta (177, 423–434) were used to localize the homogalacturonan (pectate) component of pectins in the cell walls of leaves and soybean root nodules. Leaves of two species of the dicotyledon Dubautia were compared; these species contain much pectin but differ in their tissue water relations with respect to their cell-wall properties. Maturation of the primary cell walls in nodules was studied in the Bradyrhizobium japonicum-Glycine max symbiosis. Probe labelling was based on the divalent-cation-mediated association between pectate in tissue sections and fluorescein-conjugated pectate fragments. Pectate was also labelled by mixed-dimer formation with fluorescent polyguluronate derived from alginate. The specificity of the probe for unesterified polygalacturonate was indicated by increased cell-wall labelling after chemical or enzymatic deesterification of tissue sections, in contrast to elimination of labelling by chemical esterification. Postfixation of tissue sections improved retention of soluble pectate. Pectate differences were found in the leaves among cell types, in degree of esterification, and between plant species. The cell walls of soybean nodules were strongly labelled by the pectate probe in nodules one week and three weeks after infection. Pectate was more highly esterified in the central infected zone than in the surrouding cortex. Within the infected zone, walls of uninfected cells and infected cells were similarly labelled by the pectate probe. The results indicate that the pectate molecular probe provides detailed information on pectate distribution at the cellular level for investigations of cell-wall structure, development and physiology.Abbreviations EDTA ethylenedinitrilotetraacetic acid (ethylenediaminetetraacetic acid) - NMR nuclear magnetic resonance spectroscopy - TTB 1,3,5-triazido-2,4,6-trinitrobenene  相似文献   
106.
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial uptake rate of acetic acid as a pH probe (Sentenac and Grignon (1987) Plant Physiol. 84, 1367). Acetic acid and orthophosphate uptake rates and NO 3 - accumulation were slowed down, while 86Rb+ uptake and K+ accumulation rates were increased by HCO 3 - . These effects were similar to those induced by 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid/2-amino-2-(hydroxymethyl)-1,3-propanediol (Hepes-Tris). They were more pronounced when the H+ excretion was strong, were rapidly reversible and were not additive to those of Hepes-Tris. The hypothesis is advanced that the buffering system CO2/H2CO3/HCO 3 - accelerated the diffusion of equivalent H+ inside the cell wall towards the medium. This attenuated the surface pH shift in the vicinity the plasma membrane and affected the coupling between the proton pump and cotransport systems.Abbreviations FW fresh weight - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Jaa acetic acid influx - JK + K+ influx - JPi orthophosphate influx - Mes 2-(N-morpholino)ethanesulfonic acid - pCO2 CO2 partial pressure - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
107.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   
108.
The debated identity of a small forest bushbaby in Malawi is resolved by a short-term field study of the animals’ behavior. Locomotor styles, calling patterns, and the structure of advertising calls confirm that the species is Galago zanzibaricusrather than G. demidoffor G. thomasi.A detailed comparison of acoustic structure between the Malawi animals and G. zanzibaricusin Kenya demonstrates a degree of between-population variation, although the calls remain conservative in those parameters expected to aid recognition of conspecifics. Distribution records extend the known geographical range of G. zanzibaricusover most of the northern half of Malawi. Further studies are required to link the animals from this region with either of the previously recognized subspecies: G. z. zanzibaricusfrom East Africa or G. z. grantifrom southern Malawi, Mozambique, and Zimbabwe.  相似文献   
109.
Studies were performed to define tissue culture techniques and culture conditions for morphogenesis, callus culture and plantlet culture of sweet orange (Citrus sinensis (L.) Osb.), citron (C. medica L.) and lime (C. aurantifolia) (Christm. Swing). The optimal concentrations of NAA to induce root formation on stem segments were 10 mg l-1 for sweet orange and lime, and 3 mg l-1 for citron. The optimal BA concentration for shoot and bud proliferation was 3 mg l-1 for sweet orange and citron, and 1 mg l-1 for lime. Callus initiation was accomplished in a culture medium containing 10 mg l-1 NAA and 0.25 mg l-1 BA. Callus was maintained by periodical subculture into the same medium supplemented with 10% (v:v) organge juice. In vitro plantlets of the three species were obtained by rooting of shoots developed from bud cultures, and of citron and lime by development of shoots from root cultures. The plants were successfully established on soil.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号